inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The mineral marrucciite: monoclinic Hg₃Pb₁₆Sb₁₈S₄₆

František Laufek,^a* Jiří Sejkora,^b Karla Fejfarová,^c Michal Dušek^c and Daniel Ozdín^d

^aCzech Geological Survey, Geologická 6, CZ-15200 Prague 5, Czech Republic,
 ^bNational Museum, Václavské náměstí 68, CZ-11579 Prague 1, Czech Republic,
 ^cInstitute of Physics ASCR, Na Slovance 2, CZ-18221, Prague 8, Czech Republic, and ^dDepartment of Mineralogy and Petrology, Faculty of Natural Science, Comenius University, Mlynská Dolina, SK-842 15, Bratislava, Slovak Republic Correspondence e-mail: laufek@cgu.cz

Received 20 September 2007; accepted 12 October 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (Sb–S) = 0.003 Å; disorder in main residue; R factor = 0.024; wR factor = 0.045; data-to-parameter ratio = 19.3.

Recently, a new mineral species, monoclinic marrucciite, mercury lead antimony sulfide, $Hg_3Pb_{16}Sb_{18}S_{46}$ [Orlandi *et al.* (2007). *Eur. J. Mineral.* **19**, 267–279], was discovered in the Fe–Ba deposit of Buca della Vena, Apuan Alps (Italy). In that report, the crystal structure was refined to R = 0.096. Our new discovery of crystals of this sulfosalt in the Gelnica ore district, situated in the Spišsko-gemerské rudohorie mountain range, Slovak Republic, has now allowed a substantially more precise determination of the crystal structure (R = 0.024). The monoclinic unit cell contains 19 independent cation positions (including two mixed Sb^{III}/Pb^{II} positions) and 23 independent S positions.

Related literature

For the description and relation of the crystal structure of marrucciite to other mineral species and related compounds, see Orlandi *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} \mathrm{Hg_{3}Pb_{16}S_{46}Sb_{18}} \\ M_{r} = 7583.1 \\ \mathrm{Monoclinic, } C2/m \\ a = 48.124 \ (11) \ \mathrm{\AA} \\ b = 4.1083 \ (2) \ \mathrm{\AA} \\ c = 23.990 \ (5) \ \mathrm{\AA} \\ \beta = 118.76 \ (2)^{\circ} \end{array}$

 $V = 4158.2 (15) Å^{3}$ Z = 2 Mo K\alpha radiation \mu = 44.67 mm^{-1} T = 292 K 0.04 \times 0.02 \times 0.00 mm

Data collection

```
Oxford Diffraction XCalibur CCD
diffractometer
Absorption correction: analytical
Clark & Reid (1995)
T_{\rm min} = 0.198, T_{\rm max} = 0.805
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.045$ S = 0.854942 reflections 26009 measured reflections 4942 independent reflections 3000 reflections with $I > 3\sigma(I)$ $R_{\text{int}} = 0.052$

256 parameters $\Delta \rho_{\text{max}} = 1.20 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -1.09 \text{ e } \text{ Å}^{-3}$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2004); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2004); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2000* (Petricek *et al.*, 2000); molecular graphics: *DIAMOND* 3 (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2000*.

This research was supported by an internal project of the Czech Geological Survey (No. 3323), by the Grant Agency of the Czech Republic (No. 202/05/0421), by a project of the Ministry of Culture of the Czech Republic (No. MK00002327201), and by a VEGA grant (No. 1/2028/05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2073).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Version 3. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Orlandi, P., Moëlo, Y., Campostrini, I. & Meerschaut, A. (2007). Eur. J. Mineral. 19, 267–279.
- Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.
- Petříček, V., Dušek, M. & Palatinus, L. (2000). *JANA2000*. Institute of Physics, Praha, Czech Republic.

supplementary materials

Acta Cryst. (2007). E63, i190 [doi:10.1107/S1600536806040980]

The mineral marrucciite: monoclinic Hg3Pb16Sb18S46

F. Laufek, J. Sejkora, K. Fejfarová, M. Dusek and D. Ozdín

Comment

The structure model proposed by Orlandi *et al.* (2007) is, in basic outline, confirmed; only minor deviations were found. The most striking difference is the absence of 2*b* superstructure diffraction spots, which were observed in the marrucciite from Bucca della Vena. Consequently, no split positions with half-occupancy occur in the structure model proposed in the present paper. Moreover, we present anisotropic displacement parameters for all atoms of the marrucciite structure.

Fig. 1 depicts the projection of the crystal structure of the title compound along *b*. The asymmetric unit contains two Hg^{II} positions, seven pure Pb^{II} positions, eight pure Sb^{III} positions, two mixed Pb^{II}/Sb^{III} positions [refined to Pb_{0.612 (5)}Sb_{0.388 (5)} and Pb_{0.388 (6)}Sb_{0.612 (6)}] and 23 S positions. One of the main characteristics of the structure of this compound is the ordering of Sb atoms to form so-called lone electron pair micelles (Fig. 1, left part) where the stereochemically active lone pairs of electrons on Sb are accommodated.

Experimental

Black needle fragments of the mineral marrucciite were found embedded in a quartz-siderite vein in the Gelnica ore district. They were separated from quartz by means of hydrofluoric acid. Of many fibrous crystals that were examined, only a few were suitable for X-ray single-crystal structure determination.

Refinement

For the disordered sites Pb8/Sb8 and Pb9/Sb9, atoms on the same site were constrained to have identical atomic coordinates and anisotropic displacement parameters, and the site occupancy factores at each site were constrained to sum to unity. No other constraints were apllied. The highest residual peak in the final difference Fourier map was 0.7 Å from Sb1 and the deepest hole 0.44 Å from Sb1.

Figures

Fig. 1. A projection along *b* of the crystal structure of marrucciite, monoclinic $Hg_3Pb_{16}Sb_{18}S_{48}$. Grey areas (left side of figure) highlight lone electron pair micelles.

(I)

Crystal data Hg₃Pb₁₆S₄₆Sb₁₈

 $F_{000} = 6412$

$M_r = 7583.1$	$D_{\rm x} = 6.055 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/m	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -C 2y	Cell parameters from 9276 reflections
<i>a</i> = 48.124 (11) Å	$\theta = 2.5 - 26.5^{\circ}$
<i>b</i> = 4.1083 (2) Å	$\mu = 44.67 \text{ mm}^{-1}$
c = 23.990 (5) Å	T = 292 K
$\beta = 118.76 \ (2)^{\circ}$	Prism, black
$V = 4158.2 (15) \text{ Å}^3$	$0.04\times0.02\times0.002~mm$
Z = 2	

Data collection

4942 independent reflections
3000 reflections with $I > 3\sigma(I)$
$R_{\rm int} = 0.052$
$\theta_{\text{max}} = 26.6^{\circ}$
$\theta_{\min} = 2.5^{\circ}$
$h = -59 \rightarrow 60$
$k = -5 \rightarrow 5$
$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$
$R[F^2 > 2\sigma(F^2)] = 0.024$	$(\Delta/\sigma)_{\rm max} = 0.031$
$wR(F^2) = 0.045$	$\Delta \rho_{max} = 1.20 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 0.85	$\Delta \rho_{min} = -1.09 \text{ e } \text{\AA}^{-3}$
4942 reflections	Extinction correction: none
256 parameters	

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > n*sigma(F^2)$ is used only for calculating *R*-factors *etc*. and is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the *SHELX* program.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sb1	0.42917 (2)	0	0.01409 (5)	0.0410 (5)	
Sb2	0.29529 (2)	0	0.04272 (5)	0.0326 (4)	
S1	0.04720 (8)	0	0.04514 (15)	0.0315 (15)	
S2	0.34675 (8)	0	0.04430 (13)	0.0183 (14)	
Pb1	0.160743 (13)	0	0.05141 (2)	0.0257 (2)	
S3	0.22457 (8)	0	0.04890 (17)	0.0483 (19)	
S4	0.90931 (7)	0	0.05559 (14)	0.0235 (14)	
Sb3	0.52171 (2)	0	0.08609 (5)	0.0467 (5)	
S5	0.61989 (7)	0	0.08618 (14)	0.0190 (13)	
S6	0.81662 (9)	0	0.13629 (17)	0.053 (2)	
S7	-0.00105 (8)	0	0.13619 (15)	0.0269 (14)	
Sb4	0.74970 (2)	0	0.15156 (4)	0.0228 (4)	
Pb2	0.880439 (12)	0	0.14750 (2)	0.0219 (2)	
S8	0.69971 (7)	0	0.15478 (14)	0.0193 (13)	
Pb3	0.110919 (12)	0	0.16376 (2)	0.0242 (2)	
Sb9	0.464070 (18)	0	0.18486 (4)	0.0415 (4)	0.612 (6)
Pb9	0.46407	0	0.184862	0.0415 (4)	0.388 (6)
S9	0.57042 (7)	0	0.18714 (14)	0.0190 (13)	
S10	0.27134 (8)	0	0.23034 (15)	0.0310 (15)	
Sb5	0.33940 (2)	0	0.24093 (4)	0.0229 (4)	
S11	0.39219 (7)	0	0.24290 (14)	0.0187 (13)	
S12	0.95232 (8)	0	0.24303 (14)	0.0253 (15)	
Pb8	0.052297 (17)	0	0.25068 (3)	0.0319 (4)	0.612 (5)
Sb8	0.052297	0	0.250683	0.0319 (4)	0.388 (5)
S13	0.66387 (7)	0	0.24881 (13)	0.0178 (13)	
Pb4	0.215046 (13)	0	0.26212 (2)	0.0271 (2)	
S14	0.52026 (8)	0	0.27747 (14)	0.0235 (14)	
S15	0.85629 (10)	0	0.32046 (17)	0.052 (2)	
S16	0.12719 (9)	0	0.33026 (16)	0.0437 (18)	
S17	0.76523 (7)	0	0.34565 (13)	0.0194 (13)	
Pb5	0.931045 (13)	0	0.34166 (2)	0.0258 (2)	
Sb6	0.67121 (2)	0	0.35664 (4)	0.0245 (4)	
Pb6	0.313833 (12)	0	0.37726 (2)	0.0259 (2)	
Pb7	0.026006 (13)	0	0.38264 (2)	0.0255 (2)	
S18	0.48083 (7)	0	0.38906 (13)	0.0182 (13)	
S19	0.21658 (8)	0	0.39248 (16)	0.0443 (18)	
S20	0.57670 (8)	0	0.41998 (14)	0.0233 (14)	
Hg1	0.129886 (14)	0	0.43129 (3)	0.0323 (3)	
Sb7	0.76574 (2)	0	0.44928 (4)	0.0293 (5)	
S21	0.86164 (7)	0	0.46313 (13)	0.0178 (13)	
S22	0.94500 (7)	0	0.47995 (14)	0.0188 (13)	
S23	0.30691 (8)	0	0.48875 (15)	0.0297 (15)	
Hg2	0.5	0	0.5	0.0271 (3)	
Sb10	0.59584 (3)	0.0842 (3)	0.53354 (5)	0.0196 (6)	0.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.0181 (5)	0.0697 (8)	0.0277 (5)	0	0.0050 (4)	0
Sb2	0.0193 (5)	0.0187 (5)	0.0557 (6)	0	0.0149 (5)	0
S1	0.0209 (19)	0.055 (3)	0.0199 (17)	0	0.0105 (15)	0
S2	0.0292 (19)	0.0127 (17)	0.0171 (16)	0	0.0145 (14)	0
Pb1	0.0381 (3)	0.0180 (3)	0.0249 (3)	0	0.0185 (3)	0
S3	0.017 (2)	0.098 (4)	0.026 (2)	0	0.0077 (16)	0
S4	0.0183 (18)	0.034 (2)	0.0193 (16)	0	0.0097 (14)	0
Sb3	0.0328 (6)	0.0650 (8)	0.0242 (5)	0	-0.0009 (5)	0
S5	0.0168 (17)	0.0203 (18)	0.0176 (16)	0	0.0063 (13)	0
S6	0.018 (2)	0.113 (4)	0.032 (2)	0	0.0153 (17)	0
S7	0.0181 (18)	0.040 (2)	0.0193 (17)	0	0.0068 (14)	0
Sb4	0.0172 (5)	0.0269 (5)	0.0241 (5)	0	0.0098 (4)	0
Pb2	0.0259 (3)	0.0175 (3)	0.0232 (3)	0	0.0127 (2)	0
S8	0.0218 (18)	0.0180 (18)	0.0168 (16)	0	0.0082 (14)	0
Pb3	0.0262 (3)	0.0226 (3)	0.0280 (3)	0	0.0165 (2)	0
Sb9	0.0259 (5)	0.0376 (6)	0.0552 (6)	0	0.0149 (4)	0
Pb9	0.0259 (5)	0.0376 (6)	0.0552 (6)	0	0.0149 (4)	0
S9	0.0142 (17)	0.0216 (19)	0.0180 (16)	0	0.0053 (13)	0
S10	0.0231 (19)	0.050 (3)	0.0181 (17)	0	0.0085 (15)	0
Sb5	0.0252 (5)	0.0250 (5)	0.0225 (5)	0	0.0146 (4)	0
S11	0.0184 (17)	0.0153 (18)	0.0189 (16)	0	0.0062 (14)	0
S12	0.028 (2)	0.034 (2)	0.0205 (17)	0	0.0165 (15)	0
Pb8	0.0472 (5)	0.0259 (4)	0.0341 (4)	0	0.0287 (4)	0
Sb8	0.0472 (5)	0.0259 (4)	0.0341 (4)	0	0.0287 (4)	0
S13	0.0179 (17)	0.0193 (18)	0.0142 (15)	0	0.0062 (13)	0
Pb4	0.0285 (3)	0.0205 (3)	0.0245 (3)	0	0.0065 (2)	0
S14	0.0219 (19)	0.031 (2)	0.0168 (16)	0	0.0088 (14)	0
S15	0.041 (3)	0.090 (4)	0.027 (2)	0	0.0183 (19)	0
S16	0.028 (2)	0.086 (3)	0.0161 (17)	0	0.0094 (16)	0
S17	0.0217 (18)	0.0160 (18)	0.0154 (16)	0	0.0048 (14)	0
Pb5	0.0339 (3)	0.0169 (3)	0.0244 (3)	0	0.0123 (2)	0
Sb6	0.0391 (6)	0.0181 (5)	0.0153 (4)	0	0.0123 (4)	0
Pb6	0.0244 (3)	0.0251 (3)	0.0266 (3)	0	0.0109 (2)	0
Pb7	0.0322 (3)	0.0251 (3)	0.0234 (3)	0	0.0168 (2)	0
S18	0.0179 (17)	0.0174 (18)	0.0181 (16)	0	0.0077 (14)	0
S19	0.019 (2)	0.090 (4)	0.0230 (19)	0	0.0097 (16)	0
S20	0.0218 (19)	0.024 (2)	0.0158 (16)	0	0.0025 (14)	0
Hg1	0.0443 (4)	0.0367 (4)	0.0230 (3)	0	0.0219 (3)	0
Sb7	0.0457 (6)	0.0193 (5)	0.0383 (5)	0	0.0326 (5)	0
S21	0.0189 (17)	0.0179 (18)	0.0141 (15)	0	0.0059 (13)	0
S22	0.0169 (17)	0.0227 (19)	0.0176 (16)	0	0.0090 (14)	0
S23	0.0227 (19)	0.045 (2)	0.0176 (17)	0	0.0063 (15)	0
Hg2	0.0288 (4)	0.0328 (5)	0.0176 (4)	0	0.0096 (3)	0
Sb10	0.0213 (6)	0.0203 (12)	0.0162 (5)	0.0021 (5)	0.0082 (4)	0.0009 (5)

supp	lementary	materia	S

Hg1—S21 ⁱ	2.364 (3)	Sb3—S7 ^{iv}	2.851 (3)
Hg1—S16	2.364 (4)	Sb3—S7 ^v	2.851 (3)
Hg2—S18	2.360 (3)	Sb3—S9	2.430 (3)
Pb1 ⁱⁱ —S2	2.971 (3)	Sb4 ^{vi} —S3	2.980 (3)
Pb1 ⁱⁱⁱ —S2	2.971 (3)	Sb4 ^{vii} —S3	2.980 (3)
Pb2—S6	2.951 (5)	Sb4—S8	2.444 (4)
Pb2—S11 ^{iv}	2.921 (2)	Sb4—S10 ^{iv}	2.6424 (19)
Pb2—S11 ^v	2.921 (2)	Sb4—S10 ^v	2.6424 (19)
Pb3 ^{iv} —S5	2.940 (3)	Sb5—S11	2.519 (4)
Pb3 ^v —S5	2.940 (3)	Sb5—S15 ^{vi}	2.651 (2)
Pb5—S12	2.996 (4)	Sb5—S15 ^{vii}	2.651 (2)
Pb5—S18 ^{iv}	2.938 (2)	Sb6—S13	2.437 (4)
Pb5—S18 ^v	2.938 (2)	Sb6 ^{vi} —S16	2.796 (3)
Pb6 ^{iv} —S17	2.926 (2)	S16—Sb6 ^{vii}	2.796 (3)
Pb6 ^v —S17	2.926 (2)	Sb6—S19 ^{iv}	2.814 (3)
Pb6—S23	2.850 (4)	Sb6—S19 ^v	2.814 (3)
Pb7—S20 ^{vi}	2.979 (3)	Sb7—S17	2.474 (4)
Pb7—S20 ^{vii}	2.979 (3)	Sb7 ^{vi} —S19	2.928 (2)
Pb7—S22 ⁱ	2.896 (3)	Sb7 ^{vii} —S19	2.928 (2)
Pb8—S7	2.711 (3)	Sb7—S23 ^{iv}	2.690 (2)
Pb8 ^{iv} —S9	2.930 (3)	Sb7—S23 ^v	2.690 (2)
Pb8 ^v —S9	2.930 (3)	Sb8 ^{iv} —S9	2.930 (3)
Pb8—S14 ^{vi}	2.822 (3)	Sb8 ^v —S9	2.930 (3)
Pb8—S14 ^{vii}	2.822 (3)	Sb8—S14 ^{vi}	2.822 (3)
Pb9—S12 ^{vi}	2.692 (3)	Sb8—S14 ^{vii}	2.822 (3)
Pb9—S12 ^{vii}	2.692 (3)	Sb8—S7	2.711 (3)
Pb9—S14	2.543 (3)	Sb9—S12 ^{vi}	2.692 (3)
Sb1—S4 ^{vi}	2.653 (3)	Sb9—S12 ^{vii}	2.692 (3)
Sb1—S4 ^{vii}	2.653 (3)	Sb9—S14	2.543 (3)
Sb1—S5 ^{viii}	2.428 (3)	Sb10 ^{ix} —S21	2.637 (3)
Sb2—S2	2.459 (4)	Sb10 ^x —S21	2.637 (3)
Sb2—S3 ⁱⁱⁱ	2.818 (3)	Sb10 ^{ix} —S22	2.505 (3)
Sb2—S3 ⁱⁱ	2.818 (3)	Sb10 ^x —S22	2.505 (3)
Sb2—S6 ^{vi}	2.845 (3)	Sb10—S20	2.445 (3)
Sb2—S6 ^{vii}	2.845 (3)	Sb10 ^{xi} —S20	2.445 (3)
Sb3 ^{vi} —S1	2.802 (3)	Sb10—Sb10 ^{xi}	0.6919 (15)
Sb3 ^{vii} —S1	2.802 (3)	~~~~	() ()
S4 ^{vi} —Sb1—S4 ^{vii}	101.46 (11)	S9 ^{vi} —Pb8—S14 ^{vi}	86.57 (9)

Geometric parameters (Å, °)

supplementary materials

S4 ^{vi} —Sb1—S5 ^{viii}	91.01 (9)	S9 ^{vi} —Pb8—S14 ^{vii}	163.93 (7)
S4 ^{vii} —Sb1—S4 ^{vi}	101.46 (11)	S9 ^{vii} —Pb8—S9 ^{vi}	89.03 (8)
S4 ^{vii} —Sb1—S5 ^{viii}	91.01 (9)	S9 ^{vii} —Pb8—S14 ^{vi}	163.93 (7)
S2—Sb2—S3 ⁱⁱⁱ	88.47 (11)	S9 ^{vii} —Pb8—S14 ^{vii}	86.57 (9)
S2—Sb2—S3 ⁱⁱ	88.47 (11)	S14 ^{vi} —Pb8—S14 ^{vii}	93.43 (9)
S2—Sb2—S6 ^{vi}	90.53 (11)	S14 ^{vii} —Pb8—S14 ^{vi}	93.43 (9)
S2—Sb2—S6 ^{vii}	90.53 (11)	S7—Sb8—S9 ^{vi}	81.18 (8)
S3 ⁱⁱⁱ —Sb2—S3 ⁱⁱ	93.58 (8)	S7—Sb8—S9 ^{vii}	81.18 (8)
S3 ⁱⁱⁱ —Sb2—S6 ^{vi}	86.98 (8)	S7—Sb8—S14 ^{vi}	82.88 (8)
S3 ⁱⁱⁱ —Sb2—S6 ^{vii}	178.84 (11)	S7—Sb8—S14 ^{vii}	82.88 (8)
S3 ⁱⁱ —Sb2—S3 ⁱⁱⁱ	93.58 (8)	S9 ^{vi} —Sb8—S9 ^{vii}	89.03 (8)
S3 ⁱⁱ —Sb2—S6 ^{vi}	178.84 (11)	S9 ^{vi} —Sb8—S14 ^{vi}	86.57 (9)
S3 ⁱⁱ —Sb2—S6 ^{vii}	86.98 (8)	S9 ^{vi} —Sb8—S14 ^{vii}	163.93 (7)
S6 ^{vi} —Sb2—S6 ^{vii}	92.44 (8)	S9 ^{vii} —Sb8—S9 ^{vi}	89.03 (8)
S6 ^{vii} —Sb2—S6 ^{vi}	92.44 (8)	S9 ^{vii} —Sb8—S14 ^{vi}	163.93 (7)
Sb3 ^{vi} —S1—Sb3 ^{vii}	94.31 (14)	S9 ^{vii} —Sb8—S14 ^{vii}	86.57 (9)
Sb3 ^{vii} —S1—Sb3 ^{vi}	94.31 (14)	S14 ^{vi} —Sb8—S14 ^{vii}	93.43 (9)
Sb2—S2—Pb1 ⁱⁱⁱ	103.96 (8)	S14 ^{vii} —Sb8—S14 ^{vi}	93.43 (9)
Sb2—S2—Pb1 ⁱⁱ	103.96 (8)	Sb9—S14—Pb8 ^{iv}	105.60 (8)
Pb1 ⁱⁱⁱ —S2—Pb1 ⁱⁱ	87.49 (9)	Sb9—S14—Pb8 ^v	105.60 (8)
Pb1 ⁱⁱ —S2—Pb1 ⁱⁱⁱ	87.49 (9)	Sb9—S14—Sb8 ^{iv}	105.60 (8)
S2 ⁱⁱⁱ —Pb1—S2 ⁱⁱ	87.49 (7)	Sb9—S14—Sb8 ^v	105.60 (8)
S2 ⁱⁱ —Pb1—S2 ⁱⁱⁱ	87.49 (7)	Pb9—S14—Pb8 ^{iv}	105.60 (8)
Sb2 ⁱⁱⁱ —S3—Sb2 ⁱⁱ	93.58 (11)	Pb9—S14—Pb8 ^v	105.60 (8)
Sb2 ⁱⁱⁱ —S3—Sb4 ^{vi}	89.578 (19)	Pb9—S14—Sb8 ^{iv}	105.60 (8)
Sb2 ⁱⁱⁱ —S3—Sb4 ^{vii}	175.88 (10)	Pb9—S14—Sb8 ^v	105.60 (8)
Sb2 ⁱⁱ —S3—Sb2 ⁱⁱⁱ	93.58 (11)	Pb8 ^{iv} —S14—Pb8 ^v	93.43 (13)
Sb2 ⁱⁱ —S3—Sb4 ^{vi}	175.88 (10)	Pb8 ^{iv} —S14—Sb8 ^v	93.43 (13)
Sb2 ⁱⁱ —S3—Sb4 ^{vii}	89.578 (19)	Pb8 ^v —S14—Pb8 ^{iv}	93.43 (13)
Sb4 ^{vi} —S3—Sb4 ^{vii}	87.15 (9)	Pb8 ^v —S14—Sb8 ^{iv}	93.43 (13)
Sb4 ^{vii} —S3—Sb4 ^{vi}	87.15 (9)	Sb8 ^{iv} —S14—Sb8 ^v	93.43 (12)
Sb1 ^{iv} —S4—Sb1 ^v	101.46 (15)	Sb8 ^v —S14—Sb8 ^{iv}	93.43 (12)
Sb1 ^v —S4—Sb1 ^{iv}	101.46 (15)	Sb5 ^{iv} —S15—Sb5 ^v	101.58 (13)
S1 ^{iv} —Sb3—S1 ^v	94.31 (10)	Sb5 ^v —S15—Sb5 ^{iv}	101.58 (13)
S1 ^{iv} —Sb3—S7 ^{iv}	86.64 (9)	Sb6 ^{vi} —S16—Sb6 ^{vii}	94.55 (12)
S1 ^{iv} —Sb3—S7 ^v	176.19 (8)	Sb6 ^{vi} —S16—Hg1	96.08 (8)
S1 ^{iv} —Sb3—S9	88.55 (9)	Sb6 ^{vii} —S16—Sb6 ^{vi}	94.55 (12)
S1 ^v —Sb3—S1 ^{iv}	94.31 (10)	Sb6 ^{vii} —S16—Hg1	96.08 (8)
S1 ^v —Sb3—S7 ^{iv}	176.19 (8)	Pb6 ^{iv} —S17—Pb6 ^v	89.19 (9)
S1 ^v —Sb3—S7 ^v	86.64 (9)	Pb6 ^{iv} —S17—Sb7	96.85 (7)
S1 ^v —Sb3—S9	88.55 (9)	Pb6 ^v —S17—Pb6 ^{iv}	89.19 (9)

S7 ^{iv} —Sb3—S7 ^v	92.18 (10)	Pb6 ^v —S17—Sb7	96.85 (7)
S7 ^{iv} —Sb3—S9	87.78 (9)	S12—Pb5—S18 ^{iv}	77.34 (8)
S7 ^v —Sb3—S7 ^{iv}	92.18 (10)	S12—Pb5—S18 ^v	77.34 (8)
S7 ^v —Sb3—S9	87.78 (9)	S18 ^{iv} —Pb5—S18 ^v	88.73 (6)
Sb1 ^{viii} —S5—Pb3 ^{iv}	104.96 (10)	S18 ^v —Pb5—S18 ^{iv}	88.73 (6)
Sb1 ^{viii} —S5—Pb3 ^v	104.96 (10)	S13—Sb6—S16 ^{iv}	93.02 (10)
Pb3 ^{iv} —S5—Pb3 ^v	88.64 (11)	S13—Sb6—S16 ^v	93.02 (10)
Pb3 ^v —S5—Pb3 ^{iv}	88.64 (11)	S13—Sb6—S19 ^{iv}	91.10 (10)
Sb2 ^{iv} —S6—Sb2 ^v	92.44 (11)	S13—Sb6—S19 ^v	91.10 (10)
Sb2 ^{iv} —S6—Pb2	92.10 (13)	S16 ^{iv} —Sb6—S16 ^v	94.55 (9)
Sb2 ^v —S6—Sb2 ^{iv}	92.44 (11)	S16 ^{iv} —Sb6—S19 ^{iv}	85.69 (8)
Sb2 ^v —S6—Pb2	92.10 (13)	S16 ^{iv} —Sb6—S19 ^v	175.85 (12)
Sb3 ^{vi} —S7—Sb3 ^{vii}	92.18 (13)	S16 ^v —Sb6—S16 ^{iv}	94.55 (9)
Sb3 ^{vi} —S7—Pb8	93.36 (9)	S16 ^v —Sb6—S19 ^{iv}	175.85 (12)
Sb3 ^{vi} —S7—Sb8	93.36 (9)	S16 ^v —Sb6—S19 ^v	85.69 (8)
Sb3 ^{vii} —S7—Sb3 ^{vi}	92.18 (13)	S19 ^{iv} —Sb6—S19 ^v	93.76 (8)
Sb3 ^{vii} —S7—Pb8	93.36 (9)	S19 ^v —Sb6—S19 ^{iv}	93.76 (8)
Sb3 ^{vii} —S7—Sb8	93.36 (9)	S17 ^{vi} —Pb6—S17 ^{vii}	89.19 (7)
S3 ^{iv} —Sb4—S3 ^v	87.15 (7)	S17 ^{vi} —Pb6—S23	78.66 (8)
S3 ^{iv} —Sb4—S8	90.69 (10)	S17 ^{vii} —Pb6—S17 ^{vi}	89.19 (7)
S3 ^{iv} —Sb4—S10 ^{iv}	85.35 (7)	S17 ^{vii} —Pb6—S23	78.66 (8)
S3 ^{iv} —Sb4—S10 ^v	172.09 (10)	S20 ^{vi} —Pb7—S20 ^{vii}	87.20 (7)
S3 ^v —Sb4—S3 ^{iv}	87.15 (7)	S20 ^{vi} —Pb7—S22 ⁱ	77.37 (8)
S3 ^v —Sb4—S8	90.69 (10)	S20 ^{vii} —Pb7—S20 ^{vi}	87.20 (7)
S3 ^v —Sb4—S10 ^{iv}	172.09 (10)	S20 ^{vii} —Pb7—S22 ⁱ	77.37 (8)
S3 ^v —Sb4—S10 ^v	85.35 (7)	Pb5 ^{vi} —S18—Pb5 ^{vii}	88.73 (8)
S8—Sb4—S10 ^{iv}	91.87 (11)	Pb5 ^{vi} —S18—Hg2	103.89 (11)
S8—Sb4—S10 ^v	91.87 (11)	Pb5 ^{vii} —S18—Pb5 ^{vi}	88.73 (8)
S10 ^{iv} —Sb4—S10 ^v	102.04 (8)	Pb5 ^{vii} —S18—Hg2	103.89 (11)
S10 ^v —Sb4—S10 ^{iv}	102.04 (8)	Sb6 ^{vi} —S19—Sb6 ^{vii}	93.76 (11)
S6—Pb2—S11 ^{iv}	82.66 (9)	Sb6 ^{vi} —S19—Sb7 ^{vi}	87.97 (2)
S6—Pb2—S11 ^v	82.66 (9)	Sb6 ^{vi} —S19—Sb7 ^{vii}	171.40 (16)
S11 ^{iv} —Pb2—S11 ^v	89.38 (7)	Sb6 ^{vii} —S19—Sb6 ^{vi}	93.76 (11)
$S11^{v}$ —Pb2— $S11^{iv}$	89.38 (7)	Sb6 ^{vii} —S19—Sb7 ^{vi}	171.40 (16)
S5 ^{vi} —Pb3—S5 ^{vii}	88.64 (8)	Sb6 ^{vii} —S19—Sb7 ^{vii}	87.97 (2)
S5 ^{vii} —Pb3—S5 ^{vi}	88.64 (8)	Sb7 ^{vi} —S19—Sb7 ^{vii}	89.11 (9)
S12 ^{vi} —Sb9—S12 ^{vii}	99.48 (10)	Sb7 ^{vii} —S19—Sb7 ^{vi}	89.11 (9)
S12 ^{vi} —Sb9—S14	86.98 (9)	Pb7 ^{iv} —S20—Pb7 ^v	87.20 (9)
S12 ^{vii} —Sb9—S12 ^{vi}	99.48 (10)	Pb7 ^{iv} —S20—Sb10	104.34 (13)
S12 ^{vii} —Sb9—S14	86.98 (9)	Pb7 ^{iv} —S20—Sb10 ^{xi}	93.01 (10)
S12 ^{vi} —Pb9—S12 ^{vii}	99.48 (10)	Pb7 ^v —S20—Pb7 ^{iv}	87.20 (9)

supplementary materials

S12 ^{vi} —Pb9—S14	86.98 (8)	Pb7 ^v —S20—Sb10	93.01 (10)
S12 ^{vii} —Pb9—S12 ^{vi}	99.48 (10)	Pb7 ^v —S20—Sb10 ^{xi}	104.34 (13)
S12 ^{vii} —Pb9—S14	86.98 (8)	Sb10—S20—Sb10 ^{xi}	16.27 (4)
Sb3—S9—Pb8 ^{iv}	97.66 (9)	Sb10 ^{xi} —S20—Sb10	16.27 (4)
Sb3—S9—Pb8 ^v	97.66 (9)	S16—Hg1—S21 ⁱ	174.07 (12)
Sb3—S9—Sb8 ^{iv}	97.66 (9)	S17—Sb7—S19 ^{iv}	85.25 (10)
Sb3—S9—Sb8 ^v	97.66 (9)	S17—Sb7—S19 ^v	85.25 (10)
Pb8 ^{iv} —S9—Pb8 ^v	89.03 (11)	S17—Sb7—S23 ^{iv}	90.20 (10)
Pb8 ^{iv} —S9—Sb8 ^v	89.03 (11)	S17—Sb7—S23 ^v	90.20 (10)
Pb8 ^v —S9—Pb8 ^{iv}	89.03 (11)	\$19 ^{iv} —\$b7—\$19 ^v	89.11 (7)
Pb8 ^v —S9—Sb8 ^{iv}	89.03 (11)	\$19 ^{iv} —\$b7—\$23 ^{iv}	85.50 (7)
Sb8 ^{iv} —S9—Sb8 ^v	89.03 (11)	\$19 ^{iv} —\$b7—\$23 ^v	173.21 (8)
Sb8 ^v —S9—Sb8 ^{iv}	89.03 (11)	S19 ^v —Sb7—S19 ^{iv}	89.11 (7)
Sb4 ^{vi} —S10—Sb4 ^{vii}	102.04 (10)	S19 ^v —Sb7—S23 ^{iv}	173.21 (8)
Sb4 ^{vii} —S10—Sb4 ^{vi}	102.04 (10)	S19 ^v —Sb7—S23 ^v	85.50 (7)
S11—Sb5—S15 ^{vi}	91.67 (12)	S23 ^{iv} —Sb7—S23 ^v	99.57 (8)
S11—Sb5—S15 ^{vii}	91.67 (12)	S23 ^v —Sb7—S23 ^{iv}	99.57 (8)
S15 ^{vi} —Sb5—S15 ^{vii}	101.58 (9)	Hg1 ⁱ —S21—Sb10 ^{ix}	103.66 (8)
S15 ^{vii} —Sb5—S15 ^{vi}	101.58 (9)	Hg1 ⁱ —S21—Sb10 ^x	103.66 (8)
Pb2 ^{vi} —S11—Pb2 ^{vii}	89.38 (9)	Sb10 ^{ix} —S21—Sb10 ^x	80.75 (11)
Pb2 ^{vi} —S11—Sb5	99.90 (7)	Sb10 ^x —S21—Sb10 ^{ix}	80.75 (11)
Pb2 ^{vii} —S11—Pb2 ^{vi}	89.38 (9)	Pb7 ⁱ —S22—Sb10 ^{ix}	93.75 (11)
Pb2 ^{vii} —S11—Sb5	99.90 (7)	Pb7 ⁱ —S22—Sb10 ^x	93.75 (11)
Sb9 ^{iv} —S12—Sb9 ^v	99.48 (14)	Sb10 ^{ix} —S22—Sb10 ^x	85.99 (12)
Sb9 ^{iv} —S12—Pb9 ^v	99.48 (14)	Sb10 ^x —S22—Sb10 ^{ix}	85.99 (12)
Sb9 ^{iv} —S12—Pb5	130.26 (7)	Pb6—S23—Sb7 ^{vi}	93.92 (8)
Sb9 ^v —S12—Sb9 ^{iv}	99.48 (14)	Pb6—S23—Sb7 ^{vii}	93.92 (8)
Sb9 ^v —S12—Pb9 ^{iv}	99.48 (14)	Sb7 ^{vi} —S23—Sb7 ^{vii}	99.57 (11)
Sb9 ^v —S12—Pb5	130.26 (7)	Sb7 ^{vii} —S23—Sb7 ^{vi}	99.57 (11)
Pb9 ^{iv} —S12—Pb9 ^v	99.48 (14)	S18—Hg2—S18 ⁱ	180
Pb9 ^{iv} —S12—Pb5	130.26 (7)	S18 ⁱ —Hg2—S18	180
Pb9 ^v —S12—Pb9 ^{iv}	99.48 (14)	S20—Sb10—S21 ^{ix}	89.78 (10)
Pb9 ^v —S12—Pb5	130.26 (7)	S20—Sb10—S22 ^{ix}	95.80 (10)
S7—Pb8—S9 ^{vi}	81.18 (8)	S20—Sb10—Sb10 ^{xi}	81.87 (13)
S7—Pb8—S9 ^{vii}	81.18 (8)	S21 ^{ix} —Sb10—S22 ^{ix}	96.39 (8)
S7—Pb8—S14 ^{vi}	82.88 (8)	S21 ^{ix} —Sb10—Sb10 ^{xi}	130.38 (18)
S7—Pb8—S14 ^{vii}	82.88 (8)	S22 ^{ix} —Sb10—Sb10 ^{xi}	133.00 (17)
S9 ^{vi} —Pb8—S9 ^{vii}	89.03 (8)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) -*x*+1/2, -*y*-1/2, -*z*; (iv) *x*+1/2, *y*-1/2, *z*; (v) *x*+1/2, *y*+1/2, *z*; (vi) *x*-1/2, *y*+1/2, *z*; (vii) -*x*+1, -*y*, -*z*; (ix) -*x*+3/2, -*y*+1/2, -*z*+1; (x) -*x*+3/2, *y*-1/2, -*z*+1; (xi) *x*, -*y*, *z*.

